
Problem Set 6 – Statistical Physics B

Problem 1: Gymnastics with functional derivatives

(a) Consider the functional F [u] =
∫∞
−∞ dx a(x)u(x), for a given function a. Determine

δF [u]

δu(x)
.

(b) Let t1 > 0, on which the functional G[u; t1] depends parametrically. In particular, we set

G[u; t1] =
∫∞
0 dtK(t1, t)u(t). Compute

δG[u; t1]

δu(t)
.

(c) Take the functional H[u;x′] = u(x′). Compute
δH[u]

δu(x)
.

(d) Determine
δI[u]

δu(x)
for the functional I[u] =

∫∞
−∞ dx ln[1 + u(x)].

(e) Let K : R3 → R be a completely symmetric function. Determine
δJ [u]

δu(x1, x2)
for the

functional

J [u] =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx3K(x1, x2, x3)u(x1, x2)u(x2, x3)u(x3, x1).

(f) Take the functional S[u] =
∫∞
0 dt f(u(t), u̇(t)), where u̇(t) = du/dt. Determine

δS[u]

δu(t)
= 0.

Where have you seen this equation before in physics?

Problem 2: An ideal gas in an external potential

(a) Write down the grand potential Ω for N identical particles interacting via a pairwise
additive potential v(r) in an external field Vext(r). Viewing Ω as a functional of the
intrinsic chemical potential u(r) or v(r, r′), show by explicit functional differentiation that
δΩ/δu(r) = −ρ(r) and ρ(2)(r, r′) = 2δΩ/δv(r, r′).

(b) Prove that

⟨δρ̂(r1)....δρ̂(rn)⟩ = − δnβΩ[u]

δβu(r1)...δβu(rn)
, n ≥ 2. (1)

(c) Consider an ideal gas, v = 0. Derive from Ω[u] an expression for ρ(r) in an external
potential.

(d) Write using DFT a formal expression for constancy of the chemical potential. From it,
determine F [ρ] for an ideal gas. Show that it is of the local form.

(e) Show that ⟨β−1 ln fN ⟩ = −TS, with T temperature, S entropy, and fN the grand-canonical
probability distribution. Argue that F [ρ] is indeed the intrinsic Helmholtz free energy.
Does this interpretation depend on the type of interaction potential?

(f) Compute ⟨δρ̂(r1)....δρ̂(rn)⟩ and c(n)(r1, ..., rn) for an ideal gas in an external field.

Problem 3: Sedimentation in the local density approximation
In the local density approximation we set F [ρ] =

∫
dr f(ρ(r)), with f(ρ) the Helmholtz free

energy density of a homogeneous bulk system.
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(a) Show that the equilibrium density profiles satisfy the Euler-Lagrange equation f ′(ρ(r)) +
Vext(r) = µ, with prime denoting differentiation to the argument. Give a physical inter-
pretation for f ′(ρ).

(b) Rewrite your answer from (a) as ∇p(ρ(r)) = −ρ(r)∇Vext(r). Prove that this is equivalent
to the condition for hydrostatic equilibrium.

(c) Calculate within the local-density approximation c(r, r′) and h(r, r′) and show that both
are proportial to δ(r− r′) reflecting the local nature of the approximation.

(d) Take Vext(r) = mgz, with m the mass, g the gravitational acceleration and z the altitude.
This describes the situation where particles sediment in an extenal gravititational field.
Under what conditions do you expect that the local-density approximation describes this
situation accurately?

(e) Prove that
d ln[ρ(z)V]

dz
= − κ̄T (ρ(z))

ℓg
, κ̄T (ρ) =

[
βρ

(
∂µ

∂ρ

)]−1

, (2)

for some constant V with dimensions of volume. Give an expression for ℓg. What is the
physical interpretation of κ̄T ?

(f) Compute the density profile for an ideal gas. How is the integration constant determined?

(g) Suppose we have measured the density profile of some system. Argue that from this
information we can obtain the equation of state for the system.

(h) Let us describe the situation where colloidal spheres are sedimenting in some simple fluid
with density profile ρ(z). How do the above considerations change? Hint: Because the
colloidal particles are much larger than the particles in the “solvent", you can assume the
solvent to be a structureless medium with given mass density ρs. Derive an expression for
the external potential on a single particle using the equation for hydrostatics.
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